Digital Finders and their impact on visual observing

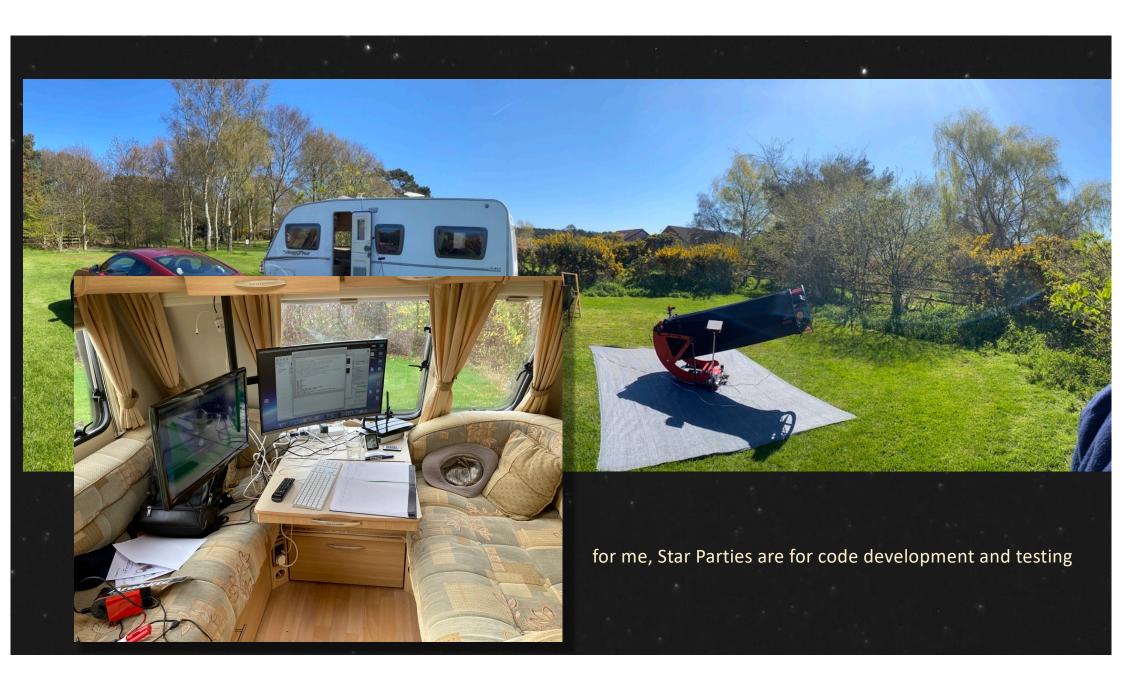
How can this technology improve your Deep Sky Observing?

First - a bit about me

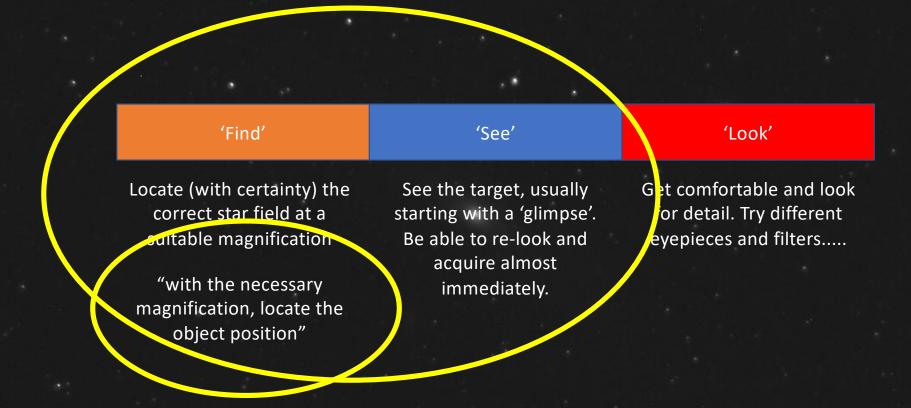
- Degree in astrophysics
- Career in engineering & science
- 25 years ago I re-discovered practical astronomy
- Equatorial 18" Newtonian in home-made dome
- 10 years at the WSP

• 20 Consecutive years at the TSP, last few as 'ATM

Program Director'


a bit more about my projects

- Ongoing project to continually rebuild my 18" 'Dobsonian'
 - Maximise performance and minimise size & weight
 - Applying my engineering skills with latest technology
 - After 5 iterations it is finally mechanically excellent
 - ScopeDog belt & roller drive system
- Became interested in Digital Finders
 - processors, cameras & software developing fast
 - About time visual observers had access



Hunting or Studying?

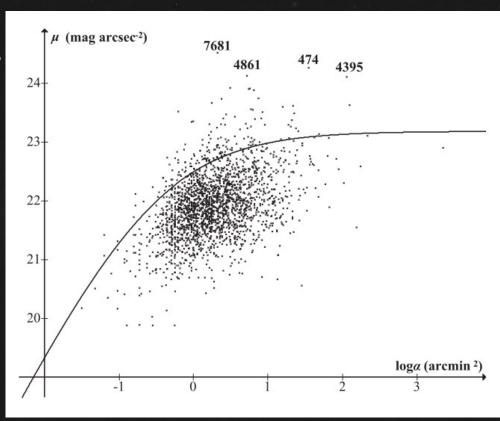
- Some like the challenge of finding a target by 'star hopping' etc
- Others just want to go there and see it
- Others like me want to see the elusive 'push the boundaries'

The classic basics for seeing the 'elusive'

Optimising the Observing Routine

- William Herschel (1738 1822)
 - First 46 'Sweeps' produced only 2 finds (≈ 6 months).
 - Working alone and making his own notes
 - His sister Caroline then started taking his notes leaving him at the telescope
 - An assistant moved the telescope
 - Then produced an average of 2 discoveries per sweep.
 - With only a 15' field of view he was able to discern even extended faint nebulosity (eg North American Nebula)
 - Truly a great observer working at the absolute limits of seeing

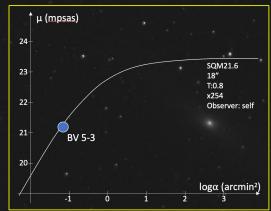
But what are the limits of seeing?



Human contrast threshold and astronomical visibility

Andrew Crumey, MNRAS 442, 2600–2619 (2014)

- Thorough re-examination of previous work (Blackwell, Curtiss, Clark, Schaefer, et al)
- Normalised previous disparate findings using a number of factors (Observer, equipment, light pollution, etc).
- Applied his new analysis to the established data.
- William Herschel data plotted here
- He missed very few he 'might have seen'



Herschel's 17.5" NGC observations

Practical aspects of 'seeing'

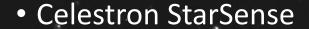
- Must maintain and protect the fullest dark adaptation
 - Personal experiments improved my limiting magnitude by 1.8! (https://astrokeith.com/seeking-the-very-elusive.pdf)
- Averted Vision
 - Up to 2 magnitudes difference across the retina rods alone
 - Most effective when the target position in the eyepiece field is known.
- Example:
 - BV 5-3 a challenging target in an 18" (SB ≈ 21. 2mag)
 - In my eyepiece field but 3 out of 4 couldn't see it.
 - When told exactly where it was, 3 out of 4 could see it.

Protecting dark adaptation and optimising averted vision is critical

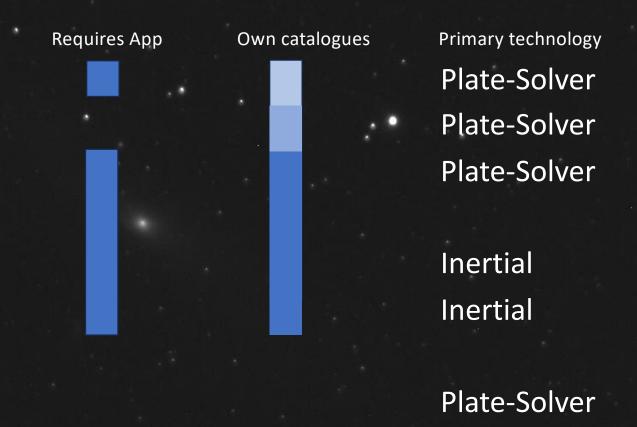
Finding the Target — a new approach

(For visual observers)

Like Herschel, sometimes we need an assistant!


- Digital Finders are like car sat-navs
- Getting you to your destination
 - No searching
 - No charts or maps
 - No getting lost!
 - No distractions
 - Less stress

Past & Recent developments in Plate-Solving


- Astro-photographers have long moved to plate-solving
 - Small camera field of view.
 - They want maximum time on target
 - They had cameras and computers already.
 - Plate-solving for most has completely removed the need for accurate alignment
- Many plate-solving applications run on small computers and even smart phones.
- Celestron StarSense is the first commercial use of a plate-solving finder for visual use.
 - Growing in popularity but not easily integrated with other scopes
- PiFinder is proving very popular

Some options for digital finders

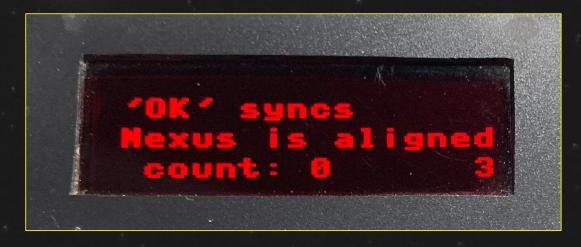
- PiFinder
- Star Hopper
- MeMstar
- AstroHopper

• eFinder

eFinder

- Primarily, plate-solving for the Nexus DSC
 - Secondary 'Live' mode. (No Nexus DSC)
 - Open source code flexible interface

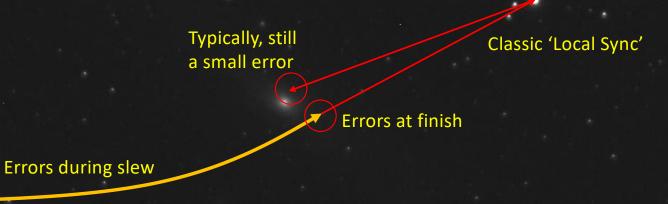
• semi-automatic calibration of eFinder to main scope offset.


- semi-automatic calibration of eFinder to main scope offset.
- Simplified & more accurate initial 2-'star' alignment

- semi-automatic calibration of eFinder to main scope offset.
- Simplified & more accurate initial 2-'star' alignment
- Display current telescope position, with respect to true RA & Dec
- Perform Nexus DSC 'Local Sync' anywhere, anytime.
- Refine a GoTo, (aka 'GoTo++')
- 'Live' mode
 - No Nexus DSC
 - SkySafari via Wifi


- semi-automatic calibration of eFinder to main scope offset.
- Simplified & more accurate initial 2-'star' alignment
- Display current telescope position, with respect to true RA & Dec
- Perform Nexus DSC 'Local Sync' anywhere, anytime.
- Refine a GoTo, (aka 'GoTo++')
- 'Live' mode
 - No Nexus DSC
 - SkySafari via Wifi

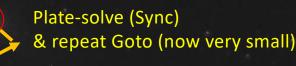
- semi-automatic calibration of eFinder to main scope offset.
- Simplified & more accurate initial 2-'star' alignment
- Display current telescope position, with respect to true RA & Dec
- Perform Nexus DSC 'Local Sync' anywhere, anytime.
- Refine a GoTo, (aka 'GoTo++')
- 'Live' mode
 - No Nexus DSC
 - SkySafari via Wifi


```
Finished GoTo++
Az=-0:033
Alt: -0:017 3
```

- semi-automatic calibration of eFinder to main scope offset.
- Simplified & more accurate initial 2-'star' alignment
- Display current telescope position, with respect to true RA & Dec
- Perform Nexus DSC 'Local Sync' anywhere, anytime.
- Refine a GoTo, (aka 'GoTo++')
- 'Live' mode
 - No Nexus DSC
 - SkySafari via Wifi

Goto++ explained

Normal Goto


Errors in starting location

Goto++ explained

• Goto++

Errors during slew

Errors in starting location

The correction takes about 1-2 seconds.

eFinder Lite

- Single box solution
- Just one cable (to Nexus DSC)
- Pi Zero 2W
- Tetra3 solver
- 'Live' mode included
- Full hardware & software design released on internet
- Around 100 built worldwide
- Fitted to scopes from 10" to 42"
- Being used with 'push to', ScopeDog, ServoCat & SiTech drives
- ScopeDog & SiTech drive users getting <<1 arc minute GoTo++ accuracy

New ... 'Nexus eFinder'

- Fully integrated into Nexus DSC Pro
- Will be available as DIY or ready built

Full launch NEAF 2026

Test Mode

Setup

Info

Benefits

- The encoders provide ...
 - Immediate responsivity
 - Resolution
 - Position while scope moving
- The plate-solver adds ...
 - Better than 1 arc minute true sky accuracy on demand.
 - Faster setting up
 - Faster target location (Push-to or Goto++)
 - Confidence in position.

- But, like all finders it relies on eFinder to main scope remaining aligned!
- eFinder open source code allows any computer to use it.

Comparison of Scope pointing aid types

	Method	Dynamic	Accuracy	Comments	Examples
Push to Scopes	Inertial (compass + accelerometer)	Laggy	~1°	Lower cost & easy to fit, but usually still requires star hopping to finish	AstroHopper, MeMstar
	Encoders	Excellent	1'-20'	Tried & tested, but requires a well built scope.	Most scope manufacturers plus Nexus, ArgoNavis
	Plate-Solver	None	< 1'	Easy to fit, accurate, but requires patience while finding!	Star Hopper, Celestron StarSense Explorer
	Plate-Solver + Inertial	Laggy	< 1'	Easy to fit and accurate. Fine adjustments can be slow.	PiFinder eFinder 'Live'
	Plate-Solver + Encoders	Excellent	< 1'	Easy addition to some encoder installations to improve accuracy.	eFinder Lite, Nexus eFinder
Driven Scopes	Encoders	Excellent	1'-20'	Tried & tested, but requires a well built scope.	Most scope manufacturers plus Nexus, ArgoNavis, ServoCat, SiTech
	Plate-Solver + Scope encoders	Excellent	<< 1 [']	Easy addition to some encoder installations to improve accuracy.	eFinder Lite, Nexus eFinder, StarDrive, ScopeDog
	Plate-Solver + Motor Encoders	Very good	<< 1 [']	Gaining popularity. Lower cost and a simpler install.	ScopeDog Lite. (Seestar!)

Full integration example

- ScopeDog runs the plate-solver code on the scope motor drive processor.
- Plug a camera directly into the drive box
- Scope drive hand pad now shows <u>absolute</u> scope eyepiece centre coordinates

ScopeDog mk3eF with integrated eFinder

Accurate mounts & encoders are becoming less essential

In Conclusion.....

- Very accurate scope positioning can
 - Help maintain Dark Adaptation
 - Greatly assist Averted Vision.
- With some effort, up to two magnitudes deeper is possible.
- A massive difference to the visual observing experience.
- Digital Finders could simplify future scope drives and the user experience.
- They allow scopes to be pointed to sub-arc minute accuracy with respect to actual sky.
- Especially useful with compact and lighter mount designs
- Close integration is key to performance and features
- For me, better DA & minimising the 'hunt' allowed much deeper observations

'Find

'See'

'Look'

Self Build Option

- eFinder variants
 - About 100 built so far
- Scopedog, with optional integrated eFinder
 - About 50 ScopeDogs built so far (10" to 42")
- Full self-build designs available on my website
 - Code available from GitHub repository
 - 3d printer designs available

www.astrokeith.com https://github.com/astrokeith email: efinder@astrokeith.com

eFinder Lite

Nexus eFinder

ScopeDog with integrated eFinder