
The Raspberry Pi and amateur astronomy
First published by Astronomy Technology Today

Background to the Raspberry Pi.
Back in 2009 a team at Cambridge University’s Computer Laboratory decided to do
something about the decline in Computer Science. They set up a charity to promote basic
computer science in schools and then to develop access to low-cost computers. The first
Raspberry Pi was launched in 2012.

With sales now approaching 40 million units and the computer now in its 4th generation, it is

certainly achieving the original objectives.
The success comes from its low price, wide
versatility and reasonable processing power.

Amateur astronomers have been quick to
find many applications for the Raspberry Pi,
and many of these have taken advantage of
its low power consumption and the ease of
adding hardware.

Raspberry Pi 4B

This ability to bring a small computer right up to the telescope and mount, even in a field,
has enabled new techniques especially in astrophotography. Commercial manufacturers
have recognised this, and a number of mount side computers are now available, some even
incorporating the Raspberry Pi as the processor.

Key to its uptake has been the relative ease of programming the computer, primarily using
Python with a growing, open source and free repository of previously written code modules.
The Raspberry Pi was also designed to allow the easy addition of hardware such as switches,
sensors, LEDs and other displays.

ScopeDog

After a career in science and engineering I had built an observatory, a couple of telescopes
and many accessories. Being an ‘early adopter’, the Raspberry PI was attractive, and I had
played with a couple over the years, but no serious projects.

A few years ago, I decided to make a Dobsonian mount for my 18” mirror set that I had
been using on a driven equatorial fork mount in my observatory. Having the new Dobsonian
mount track was a priority. Craig Colbert, who I had met at the Texas Star Party had the
same desire and so we set about a joint project. I would do the mount and telescope design
and he would do the software.

While I designed and made my telescope, Craig set about the task of coding. As an IT
professional this wasn’t too difficult for him, but as he lived 5500 miles away in Santa
Monica, bringing the hardware and software together was going to be challenging. Once we

had chosen the encoder system and drive stepper motors, we were both able to make
reasonable progress separately. At about this time we realised that a full ‘GoTo’ solution
was very little more complicated than a tracking mount, so that became our new goal.
Although stepper motors can be driven from the Raspberry Pi with very little additional
circuitry, we decided to use proprietary driver modules from Phidgets. This would put the
cost up a bit but would greatly simplify the task and additionally provide protection to the
motors and circuit boards.

We chose to use the Nexus DSC product from AstroDevices to drive the encoders and
communicate with a tablet computer running SkySafari, which would be our primary
telescope control mode. Our telescope controller, now named ‘ScopeDog’, would

communicate with the Nexus DSC to get
current telescope position and any ‘goto’
commands being issued. The main task of
the ScopeDog computer would be to
convert the RA & Dec output by the Nexus
DSC into Azimuth and Altitude, and to
calculate and command motor drive speeds
in these axes. This turns out to be quite a
computational task which has to be done
continuously at some speed. The telescope
was to have a small hand control box and
this needed to be communicated with too.

ScopeDog control box with lid removed

Craig soon established that a Raspberry Pi would be capable of achieving the workload, but
it would need to run fast and so he chose Java as the program language. While he
developed the code, I built my new Dobsonian mount and added the Nexus DSC and the
motors with their drive belts. I also built a ScopeDog control box, complete in every way
except for no code! However, Phidgets provide some coded test routines for their modules
and I was able to use these to make sure the motors would move the telescope
satisfactorily.

My telescope was the first built and so the
integration of his code and my mount would
be on my telescope in the UK. At first
progress was difficult, but we learnt how to
communicate better, needing to describe
problems and solutions with more clarity.
Video calls were a great help and often I
would be holding my phone camera next to
the motors so Craig could see and hear
exactly what his code was doing on my
hardware.

Original ScopeDog hand box mounted near the eyepiece

It took about a month to solve the main bugs and get a complete system running well
enough to use for extended periods. It wasn’t all fixing bugs, as we also added new features
and refinements during this time, and for a while afterwards. An example of this is the
action of the hand-box joystick. At fast and medium slew speeds the telescope moves in the
direction the joystick is moved. When slow speed is selected, we realised we would be
looking through the eyepiece and so for this speed only we reversed the azimuth direction,
so the motion is correct when viewed through the telescope including its diagonal
secondary mirror.

We went further and made a large number of set-up parameters easily available to the user
via a web browser, (the Raspberry Pi is set to generate its own Wi-Fi hot-spot). These
include telescope slew speeds, gear ratios and drive directions, joystick characteristics, and

motor current.

The telescope slew is achieved
by careful acceleration and
deceleration of the motors
which makes for a satisfying and
quiet experience with minimal
stress on the telescope mount.
GoTo performance is generally
within a few arc minutes, being
limited by the initial two star
alignment and telescope mount
inaccuracies and flexure.

ScopeDog and accessories mounted on my telescope base

My friend has now built his telescope, (which I had the pleasure of ‘borrowing’ at a Texas
Star Party!). Ours have been running very well for about 6 years, and I have built a few more
ScopeDog systems for colleagues after they saw mine in action.

All-Sky Camera
My second Raspberry Pi project is a little more recent. Browsing the vendors at the last
Kelling Star Party in the UK, I came across Allsky Optics who were offering parts and kits to
make an all-sky camera. I already had a suitable ccd and so I bought an acrylic dome and a
heater to make one for myself. This didn’t take long, but I soon found that the ideal
mounting position at home was too far from my desk to easily use USB, but someone
suggested using a Raspberry Pi as a ‘server’ by the camera and using wifi to communicate
back to my desk. This then triggered a whole research cycle, where I belated learnt what
many astro-photographers have known for years. Having a small computer on the telescope
mount can be very convenient, simplify connectivity and provide more functionality. My
preferred desktop package to manage the all-sky camera was to be ALLSkEye which has
many useful features, not least automatic meteor detection. This led me to base my remote
Raspberry Pi server on the Indi/Indigo standards. Indi stands for ‘Instrument Neutral
Distributed Interface’ and provides a bridge between computers and equipment, either
locally or over a network, and for Windows pc’s, Mac or Linux computers.

Setting up a Raspberry Pi as an
INDIGO Sky server has been made
very simple, taking literally only
minutes. I installed the Raspberry Pi
in my camera box and connected
the ccd and powered up.
Fortunately, there was just enough
signal from my home wifi LAN
reaching the camera box and I was
able to set up the Indigo server to
connect to my home LAN. Back at
my desk I was delighted to find that
almost every astronomy program I
ran, it was able to discover the
Indigo server and see my ccd
attached.

All sky camera mounted on roof

That night my all-sky camera did its first all-night run, working perfectly. Whilst the software
and camera were working very well, over the next couple of days I discovered setting focus
was critical and also there was a problem with condensation. I rigged up a simple motor
driven focuser and used the Raspberry Pi GPIO pins to send ½ second long pulses to the

motor. I could
now sit at my
desk and using
the built in Indigo
GPIO driver to
accurately set
focus on a live
image. I added a
fan to the camera
box to help
distribute heat
from the dome
heater and the
electronics.
These are also
remotely
controllable.

All-sky camera image

 All-sky camera , showing heater and focus drive Inside the all-sky camera housing

The all-sky camera has achieved two goals. I can keep an eye on the cloud cover, whether at
home or at a star party and have no excuses for missing clear skies. Also, if I’m busy, or just
not up to observing, I can let the camera watch for meteors.

eFinder

Many astro-photographers are now routinely using plate-solving to help align their
telescope with exactly the target they want. The telescope is slewed to the target and an
image captured. A computer then analyses the image and works out exactly where the
telescope is pointing by comparing star patterns with reference index files. The telescope
can then be adjusted if necessary so as to centre the object on the ccd. This feature is
increasingly being built into astrophotography programs, and many commercial goto
telescopes now use this technique to completely automate the two-star alignment process.
Much of this is possible through the advances in the processing power of small battery
powered low-cost computers.

Browsing the Cloudynights forum on-line I came across a couple of projects where amateur
astronomers had built their own systems based on Raspberry Pis. This was intriguing and
with the third Covid lockdown just starting I needed a new challenging project to keep me
occupied.

My current favourite style of observing with my 18” Dobsonian is to see how far I can push
the limits. I will deliberately pick targets that any sane person would consider impossible
and spend perhaps an hour seeing if I can observe it (or not!). My scope encoders and drive
will get me to within 15 arcmins typically, the errors arising from inaccuracies and flexure in
the mount and telescope. Usually, I need to use high powers to see the faint and/or small
objects and being sure I’m looking at the right field can take up a lot of time. Having seen
the object (or not) I’ll need to widen the field of view so I can double check I am seeing the
target, and not a ‘decoy’. Wouldn’t it be nice if my scope would point exactly at the target,
giving me the confidence to spend more time experimenting with filters, magnification, etc!

There were a lot of unknowns – how long would the exposures need to be, what aperture
finder scope would I need, how sensitive need the ccd camera be, and how long would the
plate-solving take? These are all interrelated and so I started by building a test rig out of

parts I already had.
Using the inevitable
Raspberry PI as the core,
I found that there was a
very good ready built
suite of programmes
under the Astroberry
name. Aimed at astro-
photographers it
includes a planetarium
program, mount and
camera controllers,
image sequencing tools
and importantly, the
excellent
Astrometry.net plate-
solver is included.

eFinder camera & Raspberry Pi

The ccd from my all-sky camera (a QHY5L-M-ii) would provide a sensitivity reference point,
but I also wanted to try out the new Raspberry HQ ccd. This was a very affordable 12MP
camera ideally suited to pairing with the Raspberry Pi, but it does have very small pixels and
hence might not be sensitive enough. Worth a try through as I would always find another
project to use it on.

My first prototype wasn’t very pretty but it worked well enough to capture a range of
images with varying exposures. From these images I used a photo editing application to
generate an even bigger range of test images with varying field of view and numbers of
stars. These I fed into the plate-solver. I was surprised by the results. Given that I can seed
the plate solver with the approximate position of the image, I found that with a 50mm
aperture and 1 degree field of view I could typically solve in around 2-5 seconds. This was
possible after exposures of only 2-3 seconds with the QHY ccd and 5 seconds with the RPi
HQ camera, although that was with 4x4 binning.

Spurred on by these results I set about building a fieldable system. It had to be rugged,
stable and resistant to dew. It would also need to communicate with the rest of my
ScopeDog telescope control system on the 18”. I also didn’t want to rely on a computer
screen for it to work, (I am a visual observer after all!), so I would need to write my own
computer program to control the camera, launch the plate-solver, calculate required
telescope offset, and communicate with the ScopeDog telescope drive. I had a little
programming experience, but none with modern object orientated languages. I dived
straight in though using Python, using the plenty of on-line resources available.

My code started off being disorganised and inefficient, but after a couple of weeks of
learning I did a major rewrite, and the finished program now works well enough. The core of
the code is a fast loop that scans the control panel buttons and refreshes the small red
alphanumeric display. When commanded the code accesses sub-routines to capture an
image, read telescope position, plate solve, convert RA & Dec to Az & Alt, calculate
telescope pointing error, and finally to command the scope to move to close gap. This
sequence is automatic.

The small display can be scrolled through to see results and to view and change various
parameters. It defaults to a simple display showing the difference between scope actual
position and required position (from SkySafari & the Nexus DSC), in arc mins. One button,
the ‘select’ button is illuminated and has three key functions: a short press results in a
measurement and display of scope position error, but doesn’t move the scope, a little
longer press causes the scope to move to position and a fresh measurement of scope
position displayed. A really long press commands the eFinder to work out where it is
pointing assuming no input from the telescope encoders – like a “where am I”. This requires
the plate solver to potentially check all 3Gb of index files and can take a minute or so.

Taking breaks from struggling with writing
good Python code, I assembled the Raspberry
PI and HQ camera into a plastic ABS box with
all the connectors I would need. I combined
the eFinder display and buttons with my
original ScopeDog controls into a new hand
box to be mounted at the eyepiece.

eFinder & ScopeDog display & controls

I’m still not sure the RPi HQ ccd will be good enough, and so my code recognises if an
alternative ccd has been plugged into the RPi USB3 port and uses that instead.

A feature I added towards the end of the project was to
automatically store the results of every plate-solve
measurement, along with date, time, azimuth and
altitude. I am expecting over time this will build up a
picture of how and when the errors occur. Some will be
down to poor initial two-star alignments and so be
different for each session, and some will be due to errors
in the mount geometry and telescope flexures and will
be similar for all sessions.

After just a couple of nights of using the eFinder on my
18” scope the impact it has made is amazing and just
what I had hoped for. The confidence in knowing my
view in the telescope eyepiece is exactly where I wanted
it to be within an arc minute, is just what I needed to
look for the most challenging objects.

The eFinder integrated with ScopeDog on my telescope

I had quite quickly concluded that the Raspberry PI HQ ccd camera module, whilst an
affordable and excellent camera, was not best suited to this role. The pixels were too small
and exposures needed to be quite long. I bought instead an ASI120mm-S mono which
proved to have excellent performance and was relatively easy to control from my Python
code. This now gave me more flexibility in placing the Raspberry PI as previously the HQ ccd
needed to be in the same box. I made a new box to house the Raspberry Pi and LCD display
and button module, along with a 12V to 5V converter.

I try to maintain a blog on my website, and Bentley Ousley in Kansas came across it and
contacted me, as he had wanted to make a similar electronic finder. He had got stuck on the
code and asked for help. Bentley on the other hand had used his 3D printer to make a great
72mm f2.7 finder scope for the project. Collaboration was obviously needed! Bentley has a
20” New Moon Dobsonian driven by ServoCat and I would need to do some changes to my
code. He had a spare lens and would 3D print me a housing, in return for me writing his
code. A deal!

Although like mine his scope was using a Nexus DSC, the ServoCat uses both its ports (serial
& USB) which I had been using to access scope position data. I contacted the ever-helpful
Serge at AstroDevices and he suggested using the Nexus DSC wifi as an alternative route to
gaining the outputs I needed. So now I had to learn how to open in my Python code a
‘TCP/IP Client Socket’ or whatever that was. The internet is a wonderful resource, and it
wasn’t long before I had this working. In fact, it worked so well that I changed my own
eFinder to use wifi and hence eliminated a cable.

Using wifi to access the Nexus DSC also enabled me to send the ‘move scope’ commands to
ServoCat. The Nexus DSC can use the classic LX200 communication protocol over wifi and
this gave me everything I needed. Cleverly, the Nexus DSC can serve multiple clients over
the wifi and so a tablet running SkySafari or similar in LX200 protocol will continue to
control the telescope alongside my eFinder.

So, everything was set. Bentley assembled a Raspberry Pi and display module ready for the
new code. With my help he configured the Raspberry Pi, its operating system and a few
extra modules/drivers that were needed. He printed me a bespoke finder housing that
would fit on my dovetail mount and along with the 72mm lens, despatched it to me across
the ‘pond’.

The housing arrived just in time for me to use it at an observing week I had planned at
Kelling Heath in the UK. This was starting on the very first day we were allowed to stay ‘out’
after our latest Covid lockdown. I had 7 clear nights out of 7, almost unheard of in the UK! I
had plenty of time to adjust settings and get the eFinder running smoothly. First step each
session is to align the eFinder with the main scope. There is a handy App available for ASI
ccd cameras that produces a rapidly updated image on an android tablet, complete with
cross wire. The eFinder is mounted on an adjustable Geoptik dovetail bracket, and
alignment to a reticule eyepiece in the main scope can be achieved within a fraction of an
arc minute, and just takes a few seconds. For telescope elevation angles above about 15
degrees, I have found that this alignment stays true well within an arc minute.

The 72mm f2.7 lens turned out to
be a game changer. With my
ASI120MM-S ccd I only needed a 1
second exposure to capture more
than enough stars for a reliable
plate solve. Refining the input
parameters to the plate-solve
resulted in most solves taking only
around 2-3 seconds. I suspect most
of this time is used in accessing
various index files on the SD card
and my next task will be to pre-
load the most commonly used
ones into RAM.

The new 3D printed finder scope mounted on the Dobsonian.

At this stage the eFinder operates only partly automatically. This is so I can understand how
well it is working and make changes. Current sequence is; do a ‘goto’ from either SkySafari
or Nexus DSC, then on a short press of the eFinder button it reads the Nexus DSC to get this
‘reference position’, it takes an image, solves it, and displays the error in arc minutes
between intended target and the centre of the field of view. Usually, this error is around 10-
15 arc minutes, resulting from initial 2-star alignment tolerances, telescope mount
inaccuracies and flexure.

A longer press of the button causes the
scope to then be moved by the calculated
amount, and a new image capture, solve
and display of pointing error. Depending
on the direction of the previous goto
movement (hence backlash), this new
pointing error is typically 1-3 arc mins.
Another longer press of the button
repeats the iteration, but now the
backlash has been used up, the final
indicated pointing error is usually less
than 1 arc minute!

Typical eFinder display of final pointing result.

By about the 3rd night at Kelling Heath I was getting pretty much 100% solve success rates.
Any failures were down to me nudging the scope when pressing the button, so it wasn’t
settled enough prior to image capture. The solution to this was to move the eFinder control
box from the eyepiece, down to the bottom of the scope.

I was really happy with how it was performing, and it got me thinking! About 20 minutes
later I had modified the code to add an ‘autotrack’ function. A really long press of the

eFinder button now started an ‘image – solve – move’ repeated loop. I was really pleased
when first time I tried it, the scope ‘locked’ on to the sky position and followed within an arc
minute or so. Each loop was taking about 5 seconds as I had inserted a pause period to let
the scope settle before imaging. The corrections were very small as the scope is quite able
to track quite well anyway. Tongue-in-cheek I purposely messed up a 2-star initial alignment
big time by using the wrong stars and tried it again. This time the eFinder autotrack had to
work harder and it was very satisfying to hear the corrections being applied every few
seconds, keeping the sky position rock steady. My own Dobsonian has been built with ball
bearings on both axes and so there is almost no stiction. The response of the scope to the

motor drives is almost instantaneous and precise.
Bentley is still struggling with bad weather and hasn’t
yet been able to commission his system yet. I suspect
on his more classic Teflon pad bearings the pointing
accuracy may not be so good. We will see and
perhaps another update article will be needed!

In the meantime, once I got back home I rewarded
my eFinder with a paint job and a foam lined custom
case.

For now, while I am still developing the system, every
image captured, error calculation, scope position and
time, is stored on the Raspberry PI SD card. When
reviewing the images I was amazed to find I could
see M13 fairly well resolved. It just goes to show
what fast optics can achieve in a 1 second exposure!

Painted eFinder in its new padded case.

I am extremely happy with how the eFinder
has turned out with performance way above
my expectations. I suspect I may have the
only ‘large’ Dobsonian able to accurately
point to an arc minute or so.

I am also very pleased that I have been able
to share the project. In fact, most of my
projects end up getting shared. Usually, it is
just giving help and advice in setting up
similar systems, but in this case it was
particularly satisfying to be able to bring
complementary skills and resources
together.

1 second eFinder exposure of M13.

Keith Venables FRAS

