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Background to the Raspberry Pi. 
Back in 2009 a team at Cambridge University’s Computer Laboratory decided to do 
something about the decline in Computer Science. They set up a charity to promote basic 
computer science in schools and then to develop access to low-cost computers. The first 
Raspberry Pi was launched in 2012. 
 
With sales now approaching 40 million units and the computer now in its 4th generation, it is 

certainly achieving the original objectives. 
The success comes from its low price, wide 
versatility and reasonable processing power. 
 
 
Amateur astronomers have been quick to 
find many applications for the Raspberry Pi, 
and many of these have taken advantage of 
its low power consumption and the ease of 
adding hardware. 

 
Raspberry Pi 4B 

This ability to bring a small computer right up to the telescope and mount, even in a field, 
has enabled new techniques especially in astrophotography. Commercial manufacturers 
have recognised this, and a number of mount side computers are now available, some even 
incorporating the Raspberry Pi as the processor. 
 
Key to its uptake has been the relative ease of programming the computer, primarily using 
Python with a growing, open source and free repository of previously written code modules. 
The Raspberry Pi was also designed to allow the easy addition of hardware such as switches, 
sensors, LEDs and other displays. 
 
ScopeDog 
 
After a career in science and engineering I had built an observatory, a couple of telescopes 
and many accessories. Being an ‘early adopter’, the Raspberry PI was attractive, and I had 
played with a couple over the years, but no serious projects. 
 
A few years ago, I decided to make a Dobsonian mount for my 18” mirror set that I had 
been using on a driven equatorial fork mount in my observatory. Having the new Dobsonian 
mount track was a priority. Craig Colbert, who I had met at the Texas Star Party had the 
same desire and so we set about a joint project. I would do the mount and telescope design 
and he would do the software.  
 
While I designed and made my telescope, Craig set about the task of coding. As an IT 
professional this wasn’t too difficult for him, but as he lived 5500 miles away in Santa 
Monica, bringing the hardware and software together was going to be challenging. Once we 



had chosen the encoder system and drive stepper motors, we were both able to make 
reasonable progress separately. At about this time we realised that a full ‘GoTo’ solution 
was very little more complicated than a tracking mount, so that became our new goal. 
Although stepper motors can be driven from the Raspberry Pi with very little additional 
circuitry, we decided to use proprietary driver modules from Phidgets. This would put the 
cost up a bit but would greatly simplify the task and additionally provide protection to the 
motors and circuit boards. 
 
We chose to use the Nexus DSC product from AstroDevices to drive the encoders and 
communicate with a tablet computer running SkySafari, which would be our primary 
telescope control mode. Our telescope controller, now named ‘ScopeDog’, would 

communicate with the Nexus DSC to get 
current telescope position and any ‘goto’ 
commands being issued. The main task of 
the ScopeDog computer would be to 
convert the RA & Dec output by the Nexus 
DSC into Azimuth and Altitude, and to 
calculate and command motor drive speeds 
in these axes. This turns out to be quite a 
computational task which has to be done 
continuously at some speed. The telescope 
was to have a small hand control box and 
this needed to be communicated with too.  
 

ScopeDog control box with lid removed 

Craig soon established that a Raspberry Pi would be capable of achieving the workload, but 
it would need to run fast and so he chose Java as the program language. While he 
developed the code, I built my new Dobsonian mount and added the Nexus DSC and the 
motors with their drive belts. I also built a ScopeDog control box, complete in every way 
except for no code! However, Phidgets provide some coded test routines for their modules 
and I was able to use these to make sure the motors would move the telescope 
satisfactorily. 
 
My telescope was the first built and so the 
integration of his code and my mount would 
be on my telescope in the UK. At first 
progress was difficult, but we learnt how to 
communicate better, needing to describe 
problems and solutions with more clarity. 
Video calls were a great help and often I 
would be holding my phone camera next to 
the motors so Craig could see and hear 
exactly what his code was doing on my 
hardware. 

Original ScopeDog hand box mounted near the eyepiece 

 



It took about a month to solve the main bugs and get a complete system running well 
enough to use for extended periods. It wasn’t all fixing bugs, as we also added new features 
and refinements during this time, and for a while afterwards. An example of this is the 
action of the hand-box joystick. At fast and medium slew speeds the telescope moves in the 
direction the joystick is moved. When slow speed is selected, we realised we would be 
looking through the eyepiece and so for this speed only we reversed the azimuth direction, 
so the motion is correct when viewed through the telescope including its diagonal 
secondary mirror. 
 
We went further and made a large number of set-up parameters easily available to the user 
via a web browser, (the Raspberry Pi is set to generate its own Wi-Fi hot-spot). These 
include telescope slew speeds, gear ratios and drive directions, joystick characteristics, and 

motor current.  
 
The telescope slew is achieved 
by careful acceleration and 
deceleration of the motors 
which makes for a satisfying and 
quiet experience with minimal 
stress on the telescope mount. 
GoTo performance is generally 
within a few arc minutes, being 
limited by the initial two star 
alignment and telescope mount 
inaccuracies and flexure. 
 
 

ScopeDog and accessories mounted on my telescope base 

My friend has now built his telescope, (which I had the pleasure of ‘borrowing’ at a Texas 
Star Party!). Ours have been running very well for about 6 years, and I have built a few more 
ScopeDog systems for colleagues after they saw mine in action. 
 
All-Sky Camera 
My second Raspberry Pi project is a little more recent. Browsing the vendors at the last 
Kelling Star Party in the UK, I came across Allsky Optics who were offering parts and kits to 
make an all-sky camera. I already had a suitable ccd and so I bought an acrylic dome and a 
heater to make one for myself. This didn’t take long, but I soon found that the ideal 
mounting position at home was too far from my desk to easily use USB, but someone 
suggested using a Raspberry Pi as a ‘server’ by the camera and using wifi to communicate 
back to my desk. This then triggered a whole research cycle, where I belated learnt what 
many astro-photographers have known for years. Having a small computer on the telescope 
mount can be very convenient, simplify connectivity and provide more functionality.  My 
preferred desktop package to manage the all-sky camera was to be ALLSkEye which has 
many useful features, not least automatic meteor detection. This led me to base my remote 
Raspberry Pi server on the Indi/Indigo standards. Indi stands for ‘Instrument Neutral 
Distributed Interface’ and provides a bridge between computers and equipment, either 
locally or over a network, and for Windows pc’s, Mac or Linux computers.  



 
Setting up a Raspberry Pi as an 
INDIGO Sky server has been made 
very simple, taking literally only 
minutes. I installed the Raspberry Pi 
in my camera box and connected 
the ccd and powered up. 
Fortunately, there was just enough 
signal from my home wifi LAN 
reaching the camera box and I was 
able to set up the Indigo server to 
connect to my home LAN. Back at 
my desk I was delighted to find that 
almost every astronomy program I 
ran, it was able to discover the 
Indigo server and see my ccd 
attached.  

All sky camera mounted on roof 

That night my all-sky camera did its first all-night run, working perfectly. Whilst the software 
and camera were working very well, over the next couple of days I discovered setting focus 
was critical and also there was a problem with condensation. I rigged up a simple motor 
driven focuser and used the Raspberry Pi GPIO pins to send ½ second long pulses to the 

motor. I could 
now sit at my 
desk and using 
the built in Indigo 
GPIO driver to 
accurately set 
focus on a live 
image. I added a 
fan to the camera 
box to help 
distribute heat 
from the dome 
heater and the 
electronics. 
These are also 
remotely 
controllable. 
 

 

 

 

 

All-sky camera image 



 

     All-sky camera , showing heater and focus drive    Inside the all-sky camera housing 

 
The all-sky camera has achieved two goals. I can keep an eye on the cloud cover, whether at 
home or at a star party and have no excuses for missing clear skies. Also, if I’m busy, or just 
not up to observing, I can let the camera watch for meteors. 
 
eFinder 
 
Many astro-photographers are now routinely using plate-solving to help align their 
telescope with exactly the target they want. The telescope is slewed to the target and an 
image captured. A computer then analyses the image and works out exactly where the 
telescope is pointing by comparing star patterns with reference index files. The telescope 
can then be adjusted if necessary so as to centre the object on the ccd. This feature is 
increasingly being built into astrophotography programs, and many commercial goto 
telescopes now use this technique to completely automate the two-star alignment process. 
Much of this is possible through the advances in the processing power of small battery 
powered low-cost computers.  
 
Browsing the Cloudynights forum on-line I came across a couple of projects where amateur 
astronomers had built their own systems based on Raspberry Pis. This was intriguing and 
with the third Covid lockdown just starting I needed a new challenging project to keep me 
occupied.  
 
My current favourite style of observing with my 18” Dobsonian is to see how far I can push 
the limits. I will deliberately pick targets that any sane person would consider impossible 
and spend perhaps an hour seeing if I can observe it (or not!). My scope encoders and drive 
will get me to within 15 arcmins typically, the errors arising from inaccuracies and flexure in 
the mount and telescope. Usually, I need to use high powers to see the faint and/or small 
objects and being sure I’m looking at the right field can take up a lot of time. Having seen 
the object (or not) I’ll need to widen the field of view so I can double check I am seeing the 
target, and not a ‘decoy’. Wouldn’t it be nice if my scope would point exactly at the target, 
giving me the confidence to spend more time experimenting with filters, magnification, etc! 
 



There were a lot of unknowns – how long would the exposures need to be, what aperture 
finder scope would I need, how sensitive need the ccd camera be, and how long would the 
plate-solving take? These are all interrelated and so I started by building a test rig out of 

parts I already had. 
Using the inevitable 
Raspberry PI as the core, 
I found that there was a 
very good ready built 
suite of programmes 
under the Astroberry 
name. Aimed at astro-
photographers it 
includes a planetarium 
program, mount and 
camera controllers, 
image sequencing tools 
and importantly, the 
excellent 
Astrometry.net plate-
solver is included. 

eFinder camera & Raspberry Pi 

The ccd from my all-sky camera (a QHY5L-M-ii) would provide a sensitivity reference point, 
but I also wanted to try out the new Raspberry HQ ccd. This was a very affordable 12MP 
camera ideally suited to pairing with the Raspberry Pi, but it does have very small pixels and 
hence might not be sensitive enough. Worth a try through as I would always find another 
project to use it on. 
  
My first prototype wasn’t very pretty but it worked well enough to capture a range of 
images with varying exposures. From these images I used a photo editing application to 
generate an even bigger range of test images with varying field of view and numbers of 
stars. These I fed into the plate-solver. I was surprised by the results. Given that I can seed 
the plate solver with the approximate position of the image, I found that with a 50mm 
aperture and 1 degree field of view I could typically solve in around 2-5 seconds. This was 
possible after exposures of only 2-3 seconds with the QHY ccd and 5 seconds with the RPi 
HQ camera, although that was with 4x4 binning. 
 
Spurred on by these results I set about building a fieldable system. It had to be rugged, 
stable and resistant to dew. It would also need to communicate with the rest of my 
ScopeDog telescope control system on the 18”. I also didn’t want to rely on a computer 
screen for it to work, (I am a visual observer after all!), so I would need to write my own 
computer program to control the camera, launch the plate-solver, calculate required 
telescope offset, and communicate with the ScopeDog telescope drive. I had a little 
programming experience, but none with modern object orientated languages. I dived 
straight in though using Python, using the plenty of on-line resources available. 
 



My code started off being disorganised and inefficient, but after a couple of weeks of 
learning I did a major rewrite, and the finished program now works well enough. The core of 
the code is a fast loop that scans the control panel buttons and refreshes the small red 
alphanumeric display. When commanded the code accesses sub-routines to capture an 
image, read telescope position, plate solve, convert RA & Dec to Az & Alt, calculate 
telescope pointing error, and finally to command the scope to move to close gap. This 
sequence is automatic. 
 
The small display can be scrolled through to see results and to view and change various 
parameters. It defaults to a simple display showing the difference between scope actual 
position and required position (from SkySafari & the Nexus DSC), in arc mins. One button, 
the ‘select’ button is illuminated and has three key functions: a short press results in a 
measurement and display of scope position error, but doesn’t move the scope, a little 
longer press causes the scope to move to position and a fresh measurement of scope 
position displayed. A really long press commands the eFinder to work out where it is 
pointing assuming no input from the telescope encoders – like a “where am I”. This requires 
the plate solver to potentially check all 3Gb of index files and can take a minute or so. 

 
Taking breaks from struggling with writing 
good Python code, I assembled the Raspberry 
PI and HQ camera into a plastic ABS box with 
all the connectors I would need. I combined 
the eFinder display and buttons with my 
original ScopeDog controls into a new hand 
box to be mounted at the eyepiece.  
 
eFinder & ScopeDog display & controls 

I’m still not sure the RPi HQ ccd will be good enough, and so my code recognises if an 
alternative ccd has been plugged into the RPi USB3 port and uses that instead. 
 
A feature I added towards the end of the project was to 
automatically store the results of every plate-solve 
measurement, along with date, time, azimuth and 
altitude. I am expecting over time this will build up a 
picture of how and when the errors occur. Some will be 
down to poor initial two-star alignments and so be 
different for each session, and some will be due to errors 
in the mount geometry and telescope flexures and will 
be similar for all sessions.  
 
After just a couple of nights of using the eFinder on my 
18” scope the impact it has made is amazing and just 
what I had hoped for. The confidence in knowing my 
view in the telescope eyepiece is exactly where I wanted 
it to be within an arc minute, is just what I needed to 
look for the most challenging objects. 

The eFinder integrated with ScopeDog on my telescope 



I had quite quickly concluded that the Raspberry PI HQ ccd camera module, whilst an 
affordable and excellent camera, was not best suited to this role. The pixels were too small 
and exposures needed to be quite long. I bought instead an ASI120mm-S mono which 
proved to have excellent performance and was relatively easy to control from my Python 
code. This now gave me more flexibility in placing the Raspberry PI as previously the HQ ccd 
needed to be in the same box. I made a new box to house the Raspberry Pi and LCD display 
and button module, along with a 12V to 5V converter. 
 
I try to maintain a blog on my website, and Bentley Ousley in Kansas came across it and 
contacted me, as he had wanted to make a similar electronic finder. He had got stuck on the 
code and asked for help. Bentley on the other hand had used his 3D printer to make a great 
72mm f2.7 finder scope for the project. Collaboration was obviously needed!  Bentley has a 
20” New Moon Dobsonian driven by ServoCat and I would need to do some changes to my 
code. He had a spare lens and would 3D print me a housing, in return for me writing his 
code. A deal! 
 
Although like mine his scope was using a Nexus DSC, the ServoCat uses both its ports (serial 
& USB) which I had been using to access scope position data. I contacted the ever-helpful 
Serge at AstroDevices and he suggested using the Nexus DSC wifi as an alternative route to 
gaining the outputs I needed. So now I had to learn how to open in my Python code a 
‘TCP/IP Client Socket’ or whatever that was. The internet is a wonderful resource, and it 
wasn’t long before I had this working. In fact, it worked so well that I changed my own 
eFinder to use wifi and hence eliminated a cable. 
 
Using wifi to access the Nexus DSC also enabled me to send the ‘move scope’ commands to 
ServoCat. The Nexus DSC can use the classic LX200 communication protocol over wifi and 
this gave me everything I needed. Cleverly, the Nexus DSC can serve multiple clients over 
the wifi and so a tablet running SkySafari or similar in LX200 protocol will continue to 
control the telescope alongside my eFinder. 
 
So, everything was set. Bentley assembled a Raspberry Pi and display module ready for the 
new code. With my help he configured the Raspberry Pi, its operating system and a few 
extra modules/drivers that were needed. He printed me a bespoke finder housing that 
would fit on my dovetail mount and along with the 72mm lens, despatched it to me across 
the ‘pond’. 
 
The housing arrived just in time for me to use it at an observing week I had planned at 
Kelling Heath in the UK. This was starting on the very first day we were allowed to stay ‘out’ 
after our latest Covid lockdown. I had 7 clear nights out of 7, almost unheard of in the UK! I 
had plenty of time to adjust settings and get the eFinder running smoothly. First step each 
session is to align the eFinder with the main scope. There is a handy App available for ASI 
ccd cameras that produces a rapidly updated image on an android tablet, complete with 
cross wire.  The eFinder is mounted on an adjustable Geoptik dovetail bracket, and 
alignment to a reticule eyepiece in the main scope can be achieved within a fraction of an 
arc minute, and just takes a few seconds.  For telescope elevation angles above about 15 
degrees, I have found that this alignment stays true well within an arc minute.  
 



The 72mm f2.7 lens turned out to 
be a game changer. With my 
ASI120MM-S ccd I only needed a 1 
second exposure to capture more 
than enough stars for a reliable 
plate solve. Refining the input 
parameters to the plate-solve 
resulted in most solves taking only 
around 2-3 seconds. I suspect most 
of this time is used in accessing 
various index files on the SD card 
and my next task will be to pre-
load the most commonly used 
ones into RAM. 
 

The new 3D printed finder scope mounted on the Dobsonian. 
 
At this stage the eFinder operates only partly automatically. This is so I can understand how 
well it is working and make changes. Current sequence is; do a ‘goto’ from either SkySafari 
or Nexus DSC, then on a short press of the eFinder button it reads the Nexus DSC to get this 
‘reference position’, it takes an image, solves it, and displays the error in arc minutes 
between intended target and the centre of the field of view. Usually, this error is around 10-
15 arc minutes, resulting from initial 2-star alignment tolerances, telescope mount 
inaccuracies and flexure. 
 

A longer press of the button causes the 
scope to then be moved by the calculated 
amount, and a new image capture, solve 
and display of pointing error. Depending 
on the direction of the previous goto 
movement (hence backlash), this new 
pointing error is typically 1-3 arc mins. 
Another longer press of the button 
repeats the iteration, but now the 
backlash has been used up, the final 
indicated pointing error is usually less 
than 1 arc minute! 
 

Typical eFinder display of final pointing result. 
 
By about the 3rd night at Kelling Heath I was getting pretty much 100% solve success rates. 
Any failures were down to me nudging the scope when pressing the button, so it wasn’t 
settled enough prior to image capture. The solution to this was to move the eFinder control 
box from the eyepiece, down to the bottom of the scope. 
 
I was really happy with how it was performing, and it got me thinking! About 20 minutes 
later I had modified the code to add an ‘autotrack’ function. A really long press of the 



eFinder button now started an ‘image – solve – move’ repeated loop. I was really pleased 
when first time I tried it, the scope ‘locked’ on to the sky position and followed within an arc 
minute or so. Each loop was taking about 5 seconds as I had inserted a pause period to let 
the scope settle before imaging. The corrections were very small as the scope is quite able 
to track quite well anyway. Tongue-in-cheek I purposely messed up a 2-star initial alignment 
big time by using the wrong stars and tried it again. This time the eFinder autotrack had to 
work harder and it was very satisfying to hear the corrections being applied every few 
seconds, keeping the sky position rock steady. My own Dobsonian has been built with ball 
bearings on both axes and so there is almost no stiction. The response of the scope to the 

motor drives is almost instantaneous and precise. 
Bentley is still struggling with bad weather and hasn’t 
yet been able to commission his system yet. I suspect 
on his more classic Teflon pad bearings the pointing 
accuracy may not be so good. We will see and 
perhaps another update article will be needed! 
 
In the meantime, once I got back home I rewarded 
my eFinder with a paint job and a foam lined custom 
case. 
 
For now, while I am still developing the system, every 
image captured, error calculation, scope position and 
time, is stored on the Raspberry PI SD card. When 
reviewing the images I was amazed to find I could 
see M13 fairly well resolved. It just goes to show 
what fast optics can achieve in a 1 second exposure! 

 
Painted eFinder in its new padded case. 
 
I am extremely happy with how the eFinder 
has turned out with performance way above 
my expectations. I suspect I may have the 
only ‘large’ Dobsonian able to accurately 
point to an arc minute or so. 
 
I am also very pleased that I have been able 
to share the project. In fact, most of my 
projects end up getting shared. Usually, it is 
just giving help and advice in setting up 
similar systems, but in this case it was 
particularly satisfying to be able to bring 
complementary skills and resources 
together. 
 

1 second eFinder exposure of M13. 
 
Keith Venables FRAS 


